get the app

DataBase Interview QUESTIONS

Exam NameDataBase Interview QUESTIONS
DescriptionDataBase Interview QUESTIONS contains the questions from various interview of IT industry.These questions are helpful to crack the IT interview.
Create QuestionPDF  

Back to Parent Category
Question: What is DBMS ?

Answer:Database management system is a collection of programs that enables user to store, retrieve, update and delete information from a database.

Question: What is RDBMS ?

Answer:Relational Database Management system (RDBMS) is a database management system (DBMS) that is based on the relational model. Data from relational database can be accessed or reassembled in many different ways without having to reorganize the database tables. Data from relational database can be accessed using a API , Structured Query Language (SQL)

Question: What is SQL ?

Answer:Structured Query Language(SQL) is a language designed specifically for communicating with databases. SQL is an ANSI (American National Standards Institute) standard .

Question: Describe the three levels of data abstraction?

Answer:The are three levels of abstraction:

  • Physical level: The lowest level of abstraction describes how data are stored.
  • Logical level: The next higher level of abstraction, describes what data are stored in database and what relationship among those data.
  • View level: The highest level of abstraction describes only part of entire database.

Question: What are the difference between clustered and a non-clustered index?

Answer:A clustered index: is a special type of index that reorders the way records in the table are physically stored. Therefore table can have only one clustered index. The leaf nodes of a clustered index contain the data pages.

A non clustered index: is a special type of index in which the logical order of the index does not match the physical stored order of the rows on disk. The leaf node of a non clustered index does not consist of the data pages. Instead, the leaf nodes contain index rows.

Question: What are the Properties of the Relational Tables?

Answer:Relational tables have the following six properties:

Values are atomic.
Column values are of the same kind.
Each row is unique.
The sequence of columns is insignificant.
The sequence of rows is insignificant.
Each column must have a unique name.

Question: What is Normalization?

Answer:Database normalization is a data design and organization process applied to data structures based on rules that help building relational databases. In relational database design, the process of organizing data to minimize redundancy is called normalization. Normalization usually involves dividing a database into two or more tables and defining relationships between the tables. The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database via the defined relationships

Question: What is De-normalization?

Answer:De-normalization is the process of attempting to optimize the performance of a database by adding redundant data. It is sometimes necessary because current DBMSs implement the relational model poorly. A true relational DBMS would allow for a fully normalized database at the logical level, while providing physical storage of data that is tuned for high performance. De-normalization is a technique to move from higher to lower normal forms of database modeling in order to speed up database access.

Question: How is ACID property related to Database?

Answer:ACID (an acronym for Atomicity Consistency Isolation Durability) is a concept that Database Professionals generally look for while evaluating databases and application architectures. For a reliable database, all this four attributes should be achieved.

Atomicity is an all-or-none proposition.

Consistency guarantees that a transaction never leaves your database in a half-finished state.

Isolation keeps transactions separated from each other until they are finished.

Durability guarantees that the database will keep track of pending changes in such a way that the server can recover from an abnormal termination.

Question: What are the Different Normalization Forms?

Answer:1NF: Eliminate Repeating Groups

Make a separate table for each set of related attributes, and give each table a primary key. Each field contains at most one value from its attribute domain.

2NF: Eliminate Redundant Data

If an attribute depends on only part of a multi-valued key, then remove it to a separate table.

3NF: Eliminate Columns Not Dependent On Key

If attributes do not contribute to a description of the key, then remove them to a separate table. All attributes must be directly dependent on the primary key. (Read more here)

BCNF: Boyce-Codd Normal Form

If there are non-trivial dependencies between candidate key attributes, then separate them out into distinct tables.

4NF: Isolate Independent Multiple Relationships

No table may contain two or more 1:n or n:m relationships that are not directly related.

5NF: Isolate Semantically Related Multiple Relationships

There may be practical constrains on information that justify separating logically related many-to-many relationships.

ONF: Optimal Normal Form

A model limited to only simple (elemental) facts, as expressed in Object Role Model notation.

DKNF: Domain-Key Normal Form

A model free from all modification anomalies is said to be in DKNF.

Question: What is a Stored Procedure?

Answer:A stored procedure is a named group of SQL statements that have been previously created and stored in the server database. Stored procedures accept input parameters so that a single procedure can be used over the network by several clients using different input data. And when the procedure is modified, all clients automatically get the new version. Stored procedures reduce network traffic and improve performance. Stored procedures can be used to help ensure the integrity of the database.

Question: What is a Trigger?

Answer:A trigger is a SQL procedure that initiates an action when an event (INSERT, DELETE or UPDATE) occurs. Triggers are stored in and managed by the DBMS. Triggers are used to maintain the referential integrity of data by changing the data in a systematic fashion. A trigger cannot be called or executed; DBMS automatically fires the trigger as a result of a data modification to the associated table. Triggers can be considered to be similar to stored procedures in that both consist of procedural logic that is stored at the database level. Stored procedures, however, are not event-drive and are not attached to a specific table as triggers are. Stored procedures are explicitly executed by invoking a CALL to the procedure while triggers are implicitly executed. In addition, triggers can also execute stored procedures.

Nested Trigger: A trigger can also contain INSERT, UPDATE and DELETE logic within itself; so when the trigger is fired because of data modification, it can also cause another data modification, thereby firing another trigger. A trigger that contains data modification logic within itself is called a nested trigger.

Question: What are the Different Types of Triggers?

Answer:There are two types of Triggers.

1) DML Trigger

There are two types of DML Triggers

1.Instead of Trigger
Instead of Triggers are fired in place of the triggering action such as an insert, update, or delete.

2. After Trigger
After triggers execute following the triggering action, such as an insert, update, or delete.

2) DDL Trigger

This type of trigger is fired against Drop Table, Create Table, Alter Table or Login events. DDL Triggers are always After Triggers.

Question: What is a View?

Answer:A simple view can be thought of as a subset of a table. It can be used for retrieving data as well as updating or deleting rows. Rows updated or deleted in the view are updated or deleted in the table the view was created with. It should also be noted that as data in the original table changes, so does the data in the view as views are the way to look at parts of the original table. The results of using a view are not permanently stored in the database. The data accessed through a view is actually constructed using standard T-SQL select command and can come from one to many different base tables or even other views.

Question: What is an Index?

Answer:An index is a physical structure containing pointers to the data. Indices are created in an existing table to locate rows more quickly and efficiently. It is possible to create an index on one or more columns of a table, and each index is given a name. The users cannot see the indexes; they are just used to speed up queries. Effective indexes are one of the best ways to improve performance in a database application. A table scan happens when there is no index available to help a query. In a table scan, the SQL Server examines every row in the table to satisfy the query results. Table scans are sometimes unavoidable, but on large tables, scans have a terrific impact on performance.

Question: What is a Linked Server?

Answer:Linked Servers is a concept in SQL Server by which we can add other SQL Server to a Group and query both the SQL Server databases using T-SQL Statements. With a linked server, you can create very clean, easy–to-follow SQL statements that allow remote data to be retrieved, joined and combined with local data. Stored Procedures sp_addlinkedserver, sp_addlinkedsrvlogin will be used to add new Linked Server. (

Question: What is Collation?

Answer:Collation refers to a set of rules that determine how data is sorted and compared. Character data is sorted using rules that define the correct character sequence with options for specifying case sensitivity, accent marks, Kana character types, and character width.

Question: What is the Difference between a Function and a Stored Procedure?

Answer:UDF can be used in the SQL statements anywhere in the WHERE/HAVING/SELECT section, whereas Stored procedures cannot be. UDFs that return tables can be treated as another rowset. This can be used in JOINs with other tables. Inline UDF’s can be thought of as views that take parameters and can be used in JOINs and other Rowset operations.

Question: What is subquery? Explain the Properties of a Subquery?

Answer:Subqueries are often referred to as sub-selects as they allow a SELECT statement to be executed arbitrarily within the body of another SQL statement. A subquery is executed by enclosing it in a set of parentheses. Subqueries are generally used to return a single row as an atomic value although they may be used to compare values against multiple rows with the IN keyword.

A subquery is a SELECT statement that is nested within another T-SQL statement. A subquery SELECT statement if executed independently of the T-SQL statement, in which it is nested, will return a resultset. This implies that a subquery SELECT statement can stand alone, and it does not depend on the statement in which it is nested. A subquery SELECT statement can return any number of values and can be found in the column list of a SELECT statement, and FROM, GROUP BY, HAVING, and/or ORDER BY clauses of a T-SQL statement. A subquery can also be used as a parameter to a function call. Basically, a subquery can be used anywhere an expression can be used.

Question: What are Different Types of Join?

Answer:Cross Join

A cross join that does not have a WHERE clause produces the Cartesian product of the tables involved in the join. The size of a Cartesian product result set is the number of rows in the first table multiplied by the number of rows in the second table. The common example is when company wants to combine each product with a pricing table to analyze each product at each price.

Inner Join

A join that displays only the rows that have a match in both joined tables is known as inner Join. This is the default type of join in the Query and View Designer.

Outer Join

A join that includes rows even if they do not have related rows in the joined table is an Outer Join. You can create three different outer join to specify the unmatched rows to be included:

Left Outer Join: In Left Outer Join, all the rows in the first-named table, i.e. “left” table, which appears leftmost in the JOIN clause, are included. Unmatched rows in the right table do not appear.
Right Outer Join: In Right Outer Join, all the rows in the second-named table, i.e. “right” table, which appears rightmost in the JOIN clause are included. Unmatched rows in the left table are not included.
Full Outer Join: In Full Outer Join, all the rows in all joined tables are included, whether they are matched or not.
Self Join

This is a particular case when one table joins to itself with one or two aliases to avoid confusion. A self join can be of any type, as long as the joined tables are the same. A self join is rather unique in that it involves a relationship with only one table. The common example is when company has a hierarchal reporting structure whereby one member of staff reports to another. Self Join can be Outer Join or Inner Join.